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S I N G U L A R  S O L U T I O N S  O F  T H E  S T A T I O N A R Y  

L I N E A R I Z E D  N A V I E R - S T O K E S  P R O B L E M  F O R  

M I C R O P O L A R  V I S C O U S  L I Q U I D S  

M. D. Martynenko and Murad Dimian UDC 532.5 

A system of singular solutions of the stationary finearized Navier-Stokes problem for viscous liquids char- 

acterized by an asymmetric stress tensor is constructed. 

Micropolar (asymmetric) fluid mechanics concerns liquid media in which the stress tensor is nonsymmetric: 

ai] ~ aji. Their study is stimulated, on the one hand, by a desire to refine the domains of applicability of classical 

hydrodynamics and, on the other hand, by the need to explain known experimental data and develop an adequate 

theory. The theoretical fundamental principles of micropolar fluid dynamics are rather fully discussed in [ 1 ], where 

resolving systems of differential equations are derived and typical problems solved within the framework of this 

theory are discussed. The equations of motion of micropolar liquids contain eight unknown functions, namely, three 

components of the linear velocity v, three components of the angular velocity f], pressure p, and density p, and 

because of their complexity they are integrated only in the simplest cases. Below, these equations are employed to 

describe the linear stationary Navier-Stokes problem when the number of unknown functions decreases to seven, 

and in this case a functional matrix is constructed whose columns represent a solution to the problem with a polar 
property. 

These solutions may be used to construct a theory of hydrodynamic potentials for a description of stationary 

flows of micropolar viscous liquids using a scheme dating back to Odqvist [2, 3 ]. 

1. The equations of motion of a micropolar liquid in terms of the components of the linear and angular 

velocities are [1 ] 

dv 
p ~ = pf - grad p + (,~ + 2H) grad div v - ~ - 7) rot rot v - 2 y rot f~ , 

( ~ ? + r + 0 )  graddivf~ - 0 ro t ro t f~  + 27f~ - 7 r o t v + p m = 0 ,  (1) 

0p + di~ (pv) = 0 
Ot 

We shall consider the particular case of these equations corresponding to a linear steady-state flow: 

(2+2/z)  graddivv - ~ - 7 )  r o t r o t v - 2 7 r o t f ~  - g r a d p + p f = 0 ,  

(r/ + r + 0 )  graddivf~ - 0 ro t ro t f~  + 27f~ - 7 r o t v + p m = 0 ,  

div v = 0.  

After transformations, this system acquires the form 

- 7 )  A v - 2 7 r o t Q  - g r a d p + p f = 0 ,  

0Af~  + (~+T)  graddivf~ + 27f~ - 7 r o t v + p m = 0 ,  (2) 
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- divv = 0 ,  

or in matrix form 

U = F ,  (3) 

where 

U = 

! 
v 1 

v2 

V3 

Q2 
~3 
P 

F =  - p  

71 
h 
h 

2m 1 
2m 2 
2m 3 

0 

A1 
A 3 

A 2 

A4 
, 

A 1 = 

(u - 7 )  A 0 o 

o - 7 )  A 0 

0 0 0, - 7 )  A 

A 2 = 

0 2703 - 2702 - 01 
- 2703 0 2701 - 02 

2702 - 2701 0 - 03 

A 3 = 

0 2703 -2702  
- 2703 0 2701 

2702 - 2701 0 
- 0 1  - 0 2  - 03 

A 4 = 

20A + 2xO~ + 47 2tr 2~c0103 

2x0102 20A + 2x022 + 47 2tr 

2tr 2tr 20A + 2x0~ + 47 

0 0 0 

0 

0 

0 

0 

0 
d i - O x i ,  i = 1 , 2 , 3 ;  x = r / + r .  

From energy considerations, the constraints for the coefficients of the system are as follows:/x > 0, 32 + 2/z > O, lz 

- y > 0 , 0 + r > 0 , 0 -  r > 0 , 7  < 0 .  

A distinguishing feature of system (3) is that it contains unknown functions with different orders of higher 
derivatives (second order for the linear and angular velocities and first order for the pressure). A symbolic 

determinant of system (3) is 

d e t A = - 8 A  a [0~u-y )  A + 2 y / z ] x I ( x + 0 ) A + 2 7 ] ,  

where 

3 

i= l  
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Therefore, despite the above distinctive feature, this system is of the elliptic type due to the indicated constraints 

on the domain of change of the coefficients entering it. 

2. We now pass to construction of solutions of system (3) with a point singularity, i.e., solutions that fail 

to exist only at one point. 

We denote by W (x, y) the fundamental  solution of the elliptical equation 

- 8A 3 [0 6u - 7) A + 27~ ]~ [(,c + 0) A + 27 ] W ( x ,  y) = 6 (x - y ) .  (4) 

Next, consider the following functional matrix: 

~I ~ = II 4 A [0 (7 - P) A - 27p ] ai] (x ,  y) II ,.j___~, (5) 

where 

aij= 2 (Ac~ij-- 0 iO]) (OA + 27) [(K + 0) A + 2~']~0 (x,  y) ,  

ai+a, ]+3 = { [(~ - 7) (,c + 0) A + 27 (,u - 7) ] 6q /x  + 

+ 0 joy [ t c ( 7 - u )  A + 2 7 2 ] ) A ~ ( x ,  y ) ,  

3 
ai+3, j = ai,]+ 3 = 27 ~ el] k 0 k A [(t~ + 0) A + 27 ] W (x ,  y) ,  

k=l 
(6) 

a7j = a]7 = 20j A [0 (7 - /~ )  A - 27,/~ ] [(K + 0) A + 27 ] ~ (x ,  y) ,  

a7,]+ 3 = ay+3, 7 = 0 ,  

a77 = - 2 ( j z - 7 )  A2 [(to + 0 )  A + 27] [ 0 ( j u - y )  A + 27tz]g , (x ,  y ) ,  

i , j = l , 3 .  

Direct calculations show that the following equality holds: 

(0) A ~ lIg,(x, y ) = O ( x - y ) E .  

Thus, it is necessary to represent the function g~(x, y) in explicit form in order to write out all elements of 

the matrix lI~0(x, y). It follows from the form of the matrix lifO(x, y) that we may confine ourselves just to finding 
the function 

~o (x ,  y) = 4A [0 (7 - / x )  A - 27/z1~ (x ,  y) ,  (8) 

which is a solution of the following equation: 

- 2A 2 [0 (7 - t )  A - 27/z ] [(x + 0) A + 2 e ] ~9 (x ,  y) = 6 (x - y) (9) 

or 

2o ~ - ~) (~ + o) a 2 ( a  + ~ )  ( a  + ,~)  ~ ( x ,  y) = 6 (~ - y ) ,  ( l o )  

where 
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Hence we have 

2 2y/~ 
kl - 0 (~':~Z)' 

,,2 (A + I,~.)79~ = /1 ,  

2 27 
k2 - tr + O. 

A 2(A + kl 2) 791 =f2, 

(11) 

(12) 

where 

A (A-t- k 2) (A + k 2) 9ol =.1'3, ( A + k2)(A-q- k 2) 791 = f4 ,  

- e x p ( - a  i r) - 1 
7 9 1 = 2 0 ~ - ) , ) ( t c + 0 ) 7 9 ,  f i =  4~r , i =  1, 2 ,  3 ;  f 4 = - - ~ - r ,  (13) 

and therefore, 

2 2 ~ 2___7~) 2 2 - 2 7  
al = - k l  - 0  > 0 ,  a 2 =  - k 2 = t c + O  > 0 ,  

r =  I x -  Yl = ~,  ( x i -  , 
i=1 

f: 12 13 (k~ + k~) h 
791 = 4 (kl 2 k~) + 4 4 + 2 ~ '  

fl f2 f3 + 

k 1 - k 2 - k 1 k2 

a 3 = 0 ,  

(14) 

fl f2 AaT1 -- 2 - - -  2 2 2" A2791 = 2 ~  + z------2' 
k 1 - k  2 k l - k  2 k 1 - k  2 kl - k  2 

Now the sought matrix l I~ may be rewritten in the form 

t 

20 Ca - 7) ix + o) @ W (x, y) = II aiy ix ,  y)II i , ]=~ ,  

where 

t 

ai] ( x ,  y) = 2 (A6i] - O i Oj) (0A + 27) [(x + 0) A + 27 ] ~O 1 (X, 3;), 

a;+3,j+a (x, y) = { ~ - r )  A [ix +o)  a + 2r] ~j  + 

+ 0 iOj [tC(y--kt) A + 27 2] }AWl (X, y) ,  

3 
a;+3j (x, y) = a;j+3 (x, y) = 2~ ~ ,~j~ ok [('~ + o) a + 27] a79~ ix,  y), 

k=l 

t s 

a7] (x ,  y) = a17 (x,  y) = 20f [0 (y -- ,u) A -- 2y/., ] [(tr + O) + 2y] A79 1 (x ,  y ) ,  

a l  ~ s 

7,y+a (x ,  y) a]+3, 7 (x ,  y) -- 0 ,  

(15) 

(16) 
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a77 (x ,  y) = -- 2 (,u -- y) [(to + 0) A + 271 [0 (,u - 7) A + 2y/t ] A2~Ol (x ,  y ) ,  

i , ] = 1 , 2 , 3 .  

Introducing (8)-(13), (14) into (15), (16) and performing simple transformations we finally arrive at the 

following form of the sought matrix lI~p (x, y): 

a V/(x, y) = 11 Ci] ( x ,  y)II i j = ~ '  (17) 

where 

l[ exp - mr) l] 1 ] 
= - + - 6 q  - 0 i O] - r Ci] - ~  l X - - y  r r ~ r ' 

1 exp ( -  a f t )  1 
- d q  - 0 i O] Ci+3, i+a 8~z0 r 

exp ( -  a i r  ) - exp ( -  azr  ) 

yr  

exp (air) - 1 ] 
~r  J 

1 3 exp ( -  a l r  ) - 1 (18) 
= = 7 ei]k ok Ci+ 3,] Ci,]+ 3 8Jr/~ = 1 r 

1 0]1 
C7,y+3 = C]+3, 7 = O, C7] = C] 7 - 4~  r ' 

0 
C77 = - ~u - 7 )  r (x,  y) ,  i ,  ] - -  1 , 3;  0 i -  Ox i .  

Direct substitution of (17), (18) into (3) shows that the constructed matrix ~ consists of columns each 

of which is a solution of the initial system of differential equations (3) with x ~ y, F - 0. 

If there are no micropolar effects in the liquid, i.e., in the case of a symmetric stress tensor aq  = aji a n d  

an ordinary viscous fluid, 7 -- 0 and from (18) we have 

o di! 1 o 1 0 . 1  
vii = C = - 4Jr/ur + ~ ~ ~ r ;  P] = C7] = - - ~  J r '  i , ] = l , 3 .  

This is the known Odqvist-Ladyzhenskaya solution of the linear stationary Navier-Stokes system corresponding to the 

action of a concentrated force directed along the x] axis. 

The constructed matrix l I~ allows us to represent the particular solution of Eq. (3) in the form of the 

convolution 

U (x) = ( a V / ( x ,  y) * F (y)) (x).  

This formula may be written out using the well-known rule of multiplication of a matrix by a column. 

To sum up, it should be noted that the method used for construction of the matrix H~ originates from 

[5-7 ], and its idea is most completely discussed in [7 ] as applied to various problems of the mechanics of a 

deformable solid. 

N O T A T I O N  

aq, components of the stress tensor; v(vl, v2, v3), vector of the linear velocity; f l ( ~ i ,  ~2, Q3), vector of 

the angular velocity; p, pressure; p,  density; f(fl ,  f2, fa), volume-distributed forces; m(ml ,  m2, m3), volume- 

distributed moments; 2,/~, coefficients of volume and shear viscosity; 7/, r, 0, coefficients of rotational viscosity; y, 

measure of "coalescence" of a liquid particle with its environment; 6ij, Kronecker symbol; cSii = 1; 8ij = 0, i ~ j; e qk ,  
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Levi-Civit a symbol; eij k = +1 oreiyk=-I  if i, j, k form an even or odd permutation of the numbers 1, 2, 3, eiyk = 0 

if i = j; i = k; j = k; r3( x -y) , Dirack delta-function; E, unit matrix; x ( x l .  x2, x3) , point of three-dimensional Euclidean 
space Oi O/Oxi; OiO j 2 3 2 2 �9 3 2 = --- O / O x i O x ] ;  A =i=1 ~ O / O x i ,  Laplaoan; r = y~(Z_l(xi-Y])_ ) . 
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